|
五大VOC废气处理工艺介绍发表时间:2023-03-07 20:17 一、VOC废气处理工艺技术——生物处理法 生物处理法净化VOC废气是近年发展起来的空气污染控制技术,它比传统工艺投资少,运行费用低,操作简单,应用范围广,是*有望替代燃烧法和吸附净化法的新技术。从处理的基本原理上讲,采用生物处理方法处理有机废气,是使用微生物的生理过程把有机废气中的有害物质转化为简单的无机物,比如CO2、H2O和其它简单无机物等。这是一种无害的有机废气处理方式。 生物净化法实际上是利用微生物的生命活动将废气中的有害物质转变成简单的无机物(如二氧化碳和水)以及细胞物质等,主要工艺有生物洗涤法,生物过滤法和生物滴滤法。 不同成分、浓度及气量的气态污染物各有其有效的生物净化系统。生物洗涤塔适宜于处理净化气量较小、浓度大、易溶且生物代谢速率较低的废气;对于气量大、浓度低的废气可采用生物过滤床;而对于负荷较高以及污染物降解后会生成酸性物质的则以生物滴滤床为好。 生物法处理有机废气是一项新的技术,由于反应器涉及到气,液,固相传质,以及生化降解过程,影响因素多而复杂,有关的理论研究及实际应用还不够深入广泛,许多问题需要进一步探讨和研究。 一般情况下,一个完整的生物处理有机废气过程包括3个基本步骤:a) 有机废气中的有机污染物首先与水接触,在水中可以迅速溶解;b) 在液膜中溶解的有机物,在液态浓度低的情况下,可以逐步扩散到生物膜中,进而被附着在生物膜上的微生物吸收;c) 被微生物吸收的有机废气,在其自身生理代谢过程中,将会被降解,*终转化为对环境没有损害的化合物质。 二、VOC废气处理工艺技术——热破坏法 热破坏法是指直接和辅助燃烧有机气体,也就是VOC,或利用合适的催化剂加快VOC的化学反应,*终达到降低有机物浓度,使其不再具有危害性的一种处理方法。 热破坏法对于浓度较低的有机废气处理效果比较好,因此,在处理低浓度废气中得到了广泛应用。这种方法主要分为两种,即直接火焰燃烧和催化燃烧。直接火焰燃烧对有机废气的热处理效率相对较高,一般情况下可达到99%。而催化燃烧指的是在催化床层的作用下,加快有机废气的化学反应速度。这种方法比直接燃烧用时更少,是高浓度、小流量有机废气净化的首选技术。 三、VOC废气处理工艺技术——吸附法 有机废气中的吸附法主要适用于低浓度、高通量有机废气。现阶段,这种有机废气的处理方法已经相当成熟,能量消耗比较小,但是处理效率却非常高,而且可以彻底净化有害有机废气。实践证明,这种处理方法值得推广应用。 但是这种方法也存在一定缺陷,它需要的设备体积比较庞大,而且工艺流程比较复杂;如果废气中有大量杂质,则容易导致工作人员中毒。所以,使用此方法处理废气的关键在于吸附剂。当前,采用吸附法处理有机废气,多使用活性炭,主要是因为活性炭细孔结构比较好,吸附性比较强。 此外,经过氧化铁或臭氧处理,活性炭的吸附性能将会更好,有机废气的处理将会更加安全和有效。 四、VOC废气处理工艺技术——氧化法 对于有毒、有害,而且不需要回收的VOC,热氧化法是*适合的处理技术和方法。氧化法的基本原理:VOC与O2发生氧化反应,生成CO2和H2O。 从化学反应方程式上看,该氧化反应和化学上的燃烧过程相类似,但其由于VOC浓度比较低,在化学反应中不会产生肉眼可见的火焰。一般情况下,氧化法通过两种方法可确保氧化反应的顺利进行:a) 加热。使含有VOC的有机废气达到反应温度;b) 使用催化剂。如果温度比较低,则氧化反应可在催化剂表面进行。所以,有机废气处理的氧化法分为以下两种方法: a) 催化氧化法。现阶段,催化氧化法使用的催化剂有两种,即贵金属催化剂和非贵金属催化剂。贵金属催化剂主要包括Pt、Pd等,它们以细颗粒形式依附在催化剂载体上,而催化剂载体通常是金属或陶瓷蜂窝,或散装填料;非贵金属催化剂主要是由过渡元素金属氧化物,比如MnO2,与粘合剂经过一定比例混合,然后制成的催化剂。为有效防止催化剂中毒后丧失催化活性,在处理前必须彻底清除可使催化剂中毒的物质,比如Pb、Zn和Hg等。如果有机废气中的催化剂毒物、遮盖质无法清除,则不可使用这种催化氧化法处理VOC; b) 热氧化法。热氧化法当前分为三种:热力燃烧式、间壁式、蓄热式。三种方法的主要区别在于热量回收方式。这三种方法均能催化法结合,降低化学反应的反应温度。 五、VOC废气处理工艺技术——变压吸附分离与净化技术 变压吸附分离与净化技术是利用气体组分可吸附在固体材料上的特性,在有机废气与分离净化装置中,气体的压力会出现一定的变化,通过这种压力变化来处理有机废气。 PSA 技术主要应用的是物理法,通过物理法来实现有机废气的净化,使用材料主要是沸石分子筛。沸石分子筛,在吸附选择性和吸附量两方面有一定优势。在一定温度和压力下,这种沸石分子筛可以吸附有机废气中的有机成分,然后把剩余气体输送到下个环节中。在吸附有机废气后,通过一定工序将其转化,保持并提高吸附剂的再生能力,进而可让吸附剂再次投入使用,然后重复上步骤工序,循环反复,直到有机废气得到净化。 近年来,该技术开始在工业生产中应用,对于气体分离有良好效果。该技术的主要优势有:能源消耗少、成本比较低、工序操作自动化及分离净化后混合物纯度比较高、环境污染小等。使用该技术对于回收和处理有一定价值的气体效果良好,市场发展前景广阔,成为未来有机废气处理技术的发展方向。 热力燃烧式热氧化器,一般情况下是指气体焚烧炉。这种气体焚烧炉由助燃剂、混合区和燃烧室三部分组成。其中,助燃剂,比如天然气、石油等,是辅助燃料,在燃烧过程中,焚烧炉内产生的热混合区可对VOC废气预热,预热后便可为有机废气的处理提供足够空间、时间,*终实现有机废气的无害化处理。 在供氧充足条件下,氧化反应的反应程度——VOC去除率——主要取决于“三T条件”:反应温度、时间(Time)、湍流混合情况(Turbulence)。这“三T条件”是相互联系的,在一定范围内,一个条件的改善可使另外两个条件降低。热力燃烧式热氧化器的缺点在于:辅助燃料价格高,导致装置操作费用比较高。 用于需要热能回收的企业或烘干线废气处理,可将能源回收用于烘干线,从而达到节约能源的目的。 优点:工艺流程简单、设备紧凑、运行可靠;净化效率高,一般均可达98%以上;与RTO相比燃烧温度低;一次性投资低,运行费用低,其热回收效率一般均可达85%以上;整个过程无废水产生,净化过程不产生NOX等二次污染;RCO净化设备可与烘房配套使用,净化后的气体可直接回用到烘房利用,达到节能减排的目的; 武汉居安仕环保科技有限公司拥有多年专业VOC废气处理工艺技术方案及成熟施工经验,有关于武汉厂房车间VOC废气处理上面的问题,欢迎来电咨询~ 下一篇工业冷风机的安装注意事项
文章分类:
行业资讯
|